
Next-Generation Drug Discovery: The Role
of AI in Global Pharma Innovation

Houman Kazemzadeh, PharmD,

PhD Student in Medicinal Chemistry,

Tehran University of Medical Sciences

2

3

4

➢Molecular Modeling + Cheminformatics

➢Pharmacophore Modeling

➢Quantitative Structure-Activity Relationship (QSAR) Analysis

➢Docking Studies

➢Molecular Dynamics

➢ADME-Tox Prediction
5

Computer Aided Drug Design
(CADD)

6

7

Method Operation Pros Cons (Limitations)

2D QSAR

Uses molecular descriptors

derived from 2D chemical

structure (e.g., logP,

molecular weight, atom

counts) to model biological

activity.

Simple, fast, low

computational cost;

interpretable descriptors.

Ignores 3D conformation,

steric and spatial interactions;

oversimplified representation.

3D QSAR

Uses 3D molecular alignment

and steric/electrostatic fields

to relate spatial features to

biological activity (e.g.,

CoMFA, CoMSIA).

Captures spatial orientation;

more predictive than 2D

QSAR when alignment is

optimal.

Highly sensitive to molecular

alignment; fails if

conformations are inaccurate;

still lacks dynamics.

Ligand-Based

Pharmacophore

Identifies common 3D

features (e.g., hydrogen bond

donor/acceptor, hydrophobic

regions) from a set of active

ligands to define essential

pharmacophoric space.

No need for receptor

structure; good for hit

expansion; interpretable

models.

Assumes similar ligands bind

similarly; lacks receptor

interaction info; static model.

Structure-Based

Pharmacophore

Extracts pharmacophore

features directly from ligand-

receptor complex or protein

binding site (e.g., via docking

or crystallography).

Utilizes direct structural

information from receptor;

context-specific modeling.

Requires accurate receptor

structure; limited by static

snapshot; ignores molecular

dynamics.

Where is AI

8

9

1. Probability

2. Decision Theory

3. Information Theory

4. Linear Algebra

5. Calculus

6. Generalized linear models

7. Optimization

8. Graphs | HyperGraphs

9. Inference algorithms

10. Message Passing

Algorithms

11. Markov Chain Monte

Carlo (MCMC)

12. Hamiltonian Monte Carlo

(HMC)

13. Generative Models

14. State-Space Modeling

15. Latent Space Modeling

16. Reinforcement Learning

17. Deep Neural Networks

18. Causality

19. Beyond the iid assumption

20. …

10

The Mathematical Background

11

12

Everything is a Graph

13

14

Recurrent Neural Networks

(RNN)

15

Recurrent Neural Networks

(RNN)

1. Sequential data

2. Order Matters

3. Dependency

4. Memory Needed: internal hidden state that serves
as a memory of previous inputs.

5. Time matters: the same set of weights and biases
across all time steps

6. Dynamic

16

•Sequential data examples:

Time Series Data

Text Data

DNA Sequences

Speech Signals

Video Data

SMILES (Simplified Molecular Input Line Entry
System)

17

18

19

20

1. Valence Information

2. Implicit Hydrogens

3. Lack of 3D Geometry Information

4. Isomer Representation

21

Recurrent Neural Networks

(RNN)

1. Generative Pre-trained Transformer (GPT)

2. Bidirectional Encoder Representations from
Transformers (BERT)

3. Bidirectional and Auto-Regressive
Transformer(BART): The best of both worlds

22

23

MegaMolBART

• MegaMolBART molecular sequence, based upon known molecular
sequences, is an autoencoder trained on small molecules in the form of
SMILES that can be used for molecular representation tasks, molecule
generation, and retrosynthesis. It was developed using the BioNeMo
framework. MegaMolBART has eight layers, four attention heads, a
hidden space dimension of 256, and contains 45M parameters. This
model is ready for commercial/non-commercial use.

25

Graph Neural Networks
(GNN)

26

• GNNs have been an area of rapid development in recent years.
According to the State of AI report from 2021, GNNs have evolved
“from niche to the hottest fields of AI research.”

• GNNs have been applied in a variety of areas, including the following:

 • Text classification (https://arxiv.org/abs/1710.10903)

 • Recommender systems (https://arxiv.org/abs/1704.06803)

 • Traffic forecasting (https://arxiv.org/abs/1707.01926)

 • Drug Discovery (https://arxiv.org/abs/1806.02473

27

https://arxiv.org/abs/1806.02473

28

29

Dynamic vs Static Graphs

Temporal Nature:

Static Graphs: Static graphs represent a snapshot of a network or
system at a single point in time. They do not capture changes or
interactions over time.

Dynamic Graphs: Dynamic graphs explicitly capture changes and
interactions over time. They consist of multiple snapshots (timestamps),
and edges or nodes can appear, disappear, or change attributes between
snapshots.

30

Dynamic vs Static Graphs

Use Cases:

Static Graphs: Static graphs are suitable for modeling systems or
networks that do not change or evolve significantly over time. They are
commonly used for social networks, citation networks, and many other
applications where the underlying structure remains relatively constant.

Dynamic Graphs: Dynamic graphs are used when modeling systems or
networks that exhibit temporal dependencies, where interactions, events,
or relationships change over time. Examples include communication
networks, transportation systems, and epidemiological models.

31

Dynamic vs Static Graphs

Representation:

Static Graphs: Static graphs are typically represented using a single
adjacency matrix, where each entry represents the presence or absence
of an edge between two nodes. Node and edge attributes are constant.

Dynamic Graphs: Dynamic graphs are represented as a sequence of
static graphs, each associated with a specific timestamp. Edges and
nodes can have associated timestamps and attributes that evolve over
time.

32

Dynamic vs Static Graphs

Analytical Challenges:

Static Graphs: Analyzing static graphs is often simpler, as they do not
involve temporal dynamics. Traditional graph algorithms and metrics
are commonly applied.

Dynamic Graphs: Analyzing dynamic graphs can be more complex
due to the need to consider temporal aspects. Researchers use
specialized algorithms for tasks like tracking node or edge changes,
detecting patterns over time, and predicting future states.

33

Dynamic vs Static Graphs

Storage and Processing:

Static Graphs: Storing and processing static graphs are often more
straightforward since the graph structure remains constant.

Dynamic Graphs: Handling dynamic graphs requires more advanced
data structures and algorithms to efficiently manage changes over time.

34

35

36

37

38

Dynamic Graph

39

40

41

42

43

44

RDKit

1. Molecule Creation

2. Property Calculation

3. Chemical Reactions

4. Molecular fingerprints

5. 3D Conformer Generation

6. QSAR modeling

7. Substructure Searching

8. Force Field Optimization

9. Pharmacophore Modeling

10. Constrained Embedding

11. Shape and Volume Calculations

12. …

45

RDKit Chem Module : Atom-Level Functions

46

• atom.GetSymbol(): Returns the atomic symbol (e.g., "C", "O").

• atom.GetChiralTag(): Retrieves the atom's chirality (R/S or achiral).

• atom.GetTotalDegree(): Gets the total degree of the atom, including bonds to hydrogen.

• atom.GetFormalCharge(): Provides the atom's formal charge.

• atom.GetTotalNumHs(): Counts explicit and implicit hydrogens on the atom.

• atom.GetNumRadicalElectrons(): Returns the number of radical electrons.

• atom.GetHybridization(): Retrieves the atom's hybridization (e.g., sp2, sp3).

• atom.GetIsAromatic(): Checks if the atom is aromatic.

• atom.IsInRing(): Determines if the atom is part of a ring.

• atom.GetOwningMol(): Retrieves the molecule object that owns the atom.

RDKit Chem Module : Bond-Level Functions

47

• bond.GetBondType(): Gets the bond type (single, double, triple, aromatic).

• bond.GetBondDir(): Retrieves the bond direction (e.g., BEGINWEDGE).

• bond.GetStereo(): Provides stereochemistry information (cis/trans).

• bond.GetIsConjugated(): Checks if the bond is conjugated.

• bond.IsInRing(): Determines if the bond is part of a ring.

• bond.GetBeginAtomIdx() and bond.GetEndAtomIdx(): Fetch the indices of

the bonded atoms.

• bond.GetOwningMol(): Retrieves the molecule object that owns the bond.

RDKit Chem Module : Molecule-Level Functions

48

•mol.GetConformer(): Retrieves the conformer for accessing 3D positions.

•mol.GetNumConformers(): Checks if the molecule has any conformers.

•mol.Compute2DCoords(): Generates 2D coordinates for the molecule.

49

50

51

Unified Graph: N-Dimensional Non-Linear Probabilistic

Graph Model

52

Model Pros Cons / Limitations

GCN (Graph Convolutional Network)
Fast, scalable; good for basic property

prediction.

No edge/bond awareness; poor long-

range expressiveness; over-smoothing in

deep layers.

*MPNN (Message Passing Neural

Network)

Accurate in molecular tasks; good

chemical realism.

Higher computational cost; complex

architecture tuning.

GAT (Graph Attention Network)
Interpretable; effective on

heterogeneous graphs.

Attention overhead increases

complexity; limited scalability to large

graphs.

*RGCN (Relational GCN)
Ideal for molecular graphs with

heterogeneous bonds.

Model size grows with relation types;

overfitting risk in small datasets.

GIN (Graph Isomorphism Network)
Strong representational capacity; good

for classification.

Ignores edge types; overfitting possible

on small data; less interpretable.

GraphSAGE
Works well on large molecular graphs;

generalizable to unseen data.

Less sensitive to chemical structure;

weaker granularity in molecular context.

*D-MPNN (Directed MPNN)
More chemically accurate; great for

reaction/property prediction.

More complex implementation; requires

directed graph data.

ChebNet
Efficient and deeper local context

modeling.

Less intuitive than spatial GCNs; not

widely adopted in cheminformatics.

53

54

55

56

57

58

59

60

61

62

63

64

Compute Unified Device Architecture

(CUDA)

65

66

67

Message Passing Interface

(MPI)

68

Message Passing Interface

(MPI)

69

Message Passing Interface

(MPI)

70

71

GROMACS_MPI

(GMX_MPI)

72

73

74

	Slide 1: Next-Generation Drug Discovery: The Role of AI in Global Pharma Innovation
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Computer Aided Drug Design (CADD)
	Slide 6
	Slide 7
	Slide 8: Where is AI
	Slide 9
	Slide 10: The Mathematical Background
	Slide 11
	Slide 12: Everything is a Graph
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: MegaMolBART
	Slide 25
	Slide 26: Graph Neural Networks (GNN)
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: RDKit
	Slide 46: RDKit Chem Module : Atom-Level Functions
	Slide 47: RDKit Chem Module : Bond-Level Functions
	Slide 48: RDKit Chem Module : Molecule-Level Functions
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

