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Computer Aided Drug Design
(CADD)

»Pharmacophore Modeling
» Quantitative Structure-Activity Relationship (QSAR) Analysis
»Docking Studies
»Molecular Dynamics

»ADME-Tox Prediction



Computer Aided Drug Design

Structure-based Ligand-based
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Method

2D QSAR

3D QSAR

Ligand-Based
Pharmacophore

Structure-Based
Pharmacophore

Operation

Uses molecular descriptors
derived from 2D chemical
structure (e.g., logP,
molecular weight, atom
counts) to model biological
activity.

Uses 3D molecular alignment
and steric/electrostatic fields
to relate spatial features to
biological activity (e.g.,
CoMFA, CoMSIA).
Identifies common 3D
features (e.g., hydrogen bond
donor/acceptor, hydrophobic
regions) from a set of active
ligands to define essential
pharmacophoric space.

Extracts pharmacophore
features directly from ligand-
receptor complex or protein
binding site (e.g., via docking
or crystallography).

Pros

Simple, fast, low
computational cost;
interpretable descriptors.

Captures spatial orientation;
more predictive than 2D
QSAR when alignment is

optimal.

No need for receptor
structure; good for hit
expansion; interpretable
models.

Utilizes direct structural
information from receptor;
context-specific modeling.

Cons (Limitations)

Ignores 3D conformation,
steric and spatial interactions;
oversimplified representation.

Highly sensitive to molecular
alignment; fails if
conformations are inaccurate;
still lacks dynamics.

Assumes similar ligands bind
similarly; lacks receptor
interaction info; static model.

Requires accurate receptor
structure; limited by static
snapshot; ignores molecular
dynamics.



Where is Al

RECENT

Structure Based TRENDS IN Ligand Based
Drug Design DRUG DESIGN Drug Design
AND
DISCOVERY

3D-QSAR &
toxicity
prediction

3D-Structure
prediction

QSAR and Machine
Learning

Molecular docking &
Virtual screening

Molecular Dynamics
& Binding free energy
calculation

Artificial intelligence
(Al) and big data
analyses

LEAD IDENTIFICATION




Software 1.0 > Software 2.0
Traditional programming

Machine learning

Data %
Program Computer 9 Computer 9
(rules)

Program
(probability)




The Mathematical Background

Probability 9.

Decision Theory 10.

Information Theory
Linear Algebra

Calculus

12.

Generalized linear models

Optimization

13.

Graphs | HyperGraphs

11.

Inference algorithms

Message Passing

Algorithms

Markov Chain Monte
Carlo (MCMC)

Hamiltonian Monte Carlo
(HMC)

Generative Models

14.
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State-Space Modeling
Latent Space Modeling
Reinforcement Learning
Deep Neural Networks
Causality

Beyond the iid assumption

20. ...
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Multigraph
(Heterogeneous edges)

Global Node O

Hypernodes C)/&Q _____
. \

Node to
to hypernode
edges

Edge types Nodes

Figure 16.10: Left: a multigraph can have different edge types. Right: a hypergraph can have edges which
connect multiple nodes. From [Sanchez-lengeling2021/. Used with kind permission of Benjamin Sanchez-
Lengeling.
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Recurrent Neural Networks

(RNN)
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. Sequential data

. Order Matters

. Dependency

. Memory Needed: internal hidden state that serves

as a memory of previous Inputs.

. Time matters: the same set of weights and biases

across all time steps

. Dynamic



» Sequential data examples:
Ime Series Data

ext Data

DNA Sequences

Speech Signals

Video Data
SMILES (Simplified Molecular Input Line Entry
System)
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ce n t ra I Research Article
SCie n c e #, Cite This: ACS Cent. Sci 2018, 4, 120-131

Generating Focused Molecule Libraries for Drug Discovery with
Recurrent Neural Networks

Marwin H. S. Segler,*’+ Thierry Kogej,i Christian Tyrchan,§ and Mark P. Waller* !

"Institute of Organic Chemistry & Center for Multiscale Theory and Computation, Westfilische Wilhelms-Universitit Miinster,
48149 Miinster, Germany

Hit Discovery, Discovery Sciences, AstraZeneca R&D, Gothenburg, Sweden

*Department of Medicinal Chemistry, IMED RIA, AstraZeneca R&D, Gothenburg, Sweden

"Depanment of Physics & International Centre for Quantum and Molecular Structures, Shanghai University, Shanghai, China

© Supporting Information

ABSTRACT: In de novo drug design, computational strategies are used to generate
novel molecules with good athnity to the desired biological target. In this work, we Property y =» = Structure X
show that recurrent neural networks can be trained as generative models for
molecular structures, similar to statistical language models in natural language

processing. We demonstrate that the properties of the generated molecules correlate Recurrent
very well with the properties of the molecules used to train the model. In order to Neural
enrich libraries with molecules active toward a given biological target, we propose to Network

fine-tune the model with small sets of molecules, which are known to be active

against that target. Against Staphylococcus aureus, the model reproduced 14% of 6051 hold-out test molecules that medicinal
chemists designed, whereas against Plasmodium falciparum (Malaria), it reproduced 28% of 1240 test molecules. When coupled
with a scoring function, our model can perform the complete de novo drug design cycle to generate large sets of novel molecules
for drug discovery.
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1. Valence Information

2. Implicit Hydrogens

3. Lack of 3D Geometry Information
4. lsomer Representation

\)\ 5-methyl-4-(2-methylpropyl)-4-(propan-2-yl) hept-1-ene
CHy  CCE)CClCe=C)(CCIC)CIE)ICO
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Figure 16.6: The original transformer architecture
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1. Generative Pre-trained Transformer (GPT)

2. Bidirectional Encoder Representations from
Transformers (BERT)

3. Bidirectional and Auto-Regressive
Transformer(BART): The best of both worlds






MegaMoIBART

* MegaMoIBART molecular sequence, based upon known molecular
seguences, Is an autoencoder trained on small molecules in the form of
SMILES that can be used for molecular representation tasks, molecule
generation, and retrosynthesis. It was developed using the BioNeMo
framework. MegaMolIBART has eight layers, four attention heads, a
hidden space dimension of 256, and contains 45M parameters. This
model is ready for commercial/non-commercial use.



CCC=0)0clccccelC(=0)0 Fredicted

Aspirin SMILES
ElT
| CC(=0)0c1ccccclC(=0)0 J
NVIDIA Library |
Decoder
Nx
Encoder
Nx
Positional Positional
Encoding Encoding
A A
Encoder Decoder
Embeddin Embeddin
Tokenized Tokenized
SMILES CC(=0)0clccceclC(=0)0 CC(=0)Oc1ccccc;lC(=0)0 SMILES

COc1cce2n ¢(S (=0) Ce3nec(C) ¢(OC)e3C) [nHc2c

25



.Gr'aph Neural Networks
~ (GNN) |




* GNNs have been an area of rapid development in recent years.
According to the State of Al report from 2021, GNNs have evolved
“from niche to the hottest fields of Al research.”

* GNNSs have been applied in a variety of areas, including the following:
o Text classification (https://arxiv.org/abs/1710.10903)
* Recommender systems (https://arxiv.org/abs/1704.06803)
* Traffic forecasting (https://arxiv.org/abs/1707.01926)
* Drug Discovery (https://arxiv.org/abs/1806.02473



https://arxiv.org/abs/1806.02473

Directed graph Undirected graph

Edge-labeled Node-labeled
undirected graph undirected graph

i

Node- and edge-labeled
undirected graph
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Dynamic vs Static Graphs

Temporal Nature:

Static Graphs: Static graphs represent a snapshot of a network or
system at a single point in time. They do not capture changes or
Interactions over time.

Dynamic Graphs:

They consist of (timestamps),
and edges or nodes can appear, disappear, or change attributes between
snapshots.



Dynamic vs Static Graphs

Use Cases:

Static Graphs: Static graphs are suitable for modeling systems or

networks that do not change or evolve significantly over time. They are
commonly used for social networks, citation networks, and many other
applications where the underlying structure remains relatively constant.

Dynamic Graphs: Dynamic graphs are used when modeling systems or
networks that

Examples include communication
networks, transportation systems, and epidemiological models.



Dynamic vs Static Graphs

Representation:

Static Graphs: Static graphs are typically represented using a single
adjacency matrix, where each entry represents the presence or absence
of an edge between two nodes. Node and edge attributes are constant.

Dynamic Graphs: Dynamic graphs are represented as a
Edges and

nodes can have associated timestamps and attributes that



Dynamic vs Static Graphs

Analytical Challenges:

Static Graphs: Analyzing static graphs is often simpler, as they do not
Involve temporal dynamics. Traditional graph algorithms and metrics
are commonly applied.

Dynamic Graphs: Analyzing dynamic graphs can be more complex
due to the need to consider temporal aspects. Researchers use

for tasks like tracking node or edge changes,
detecting patterns over time, and predicting future states.




Dynamic vs Static Graphs

Storage and Processing:

Static Graphs: Storing and processing static graphs are often more
straightforward since the graph structure remains constant.

Dynamic Graphs: Handling dynamic graphs requires
and algorithms to efficiently manage changes over time.



Friend graph

Molecular graph
of caffeine
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Double bond (DB)

N:4

Caffeine molecule

C13
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Dynamic Graph

Molecular Graph

Reconstruction
| Generation
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In Euclidean Space In Non-Euclidean Space
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Surfaces Distributions Functions on Manifolds

Hyperbolic spaces Hyper-surfaces Molecules General manifolds
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() Cornell University

/1V > ¢s > arXiv:1704.01212

Computer Science > Machine Learning

[Submitted on 4 Apr 2017 (v1), last revised 12 Jun 2017 (this version, v2)]
Neural Message Passing for Quantum Chemistry

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, George E. Dahl

Supervised learning on molecules has incredible potential to be useful in chemistry, drug discovery, and materials science. Luckily, several promising and closely related neural network models
invariant to molecular symmetries have already been described in the literature. These models learn a message passing algorithm and aggregation procedure to compute a function of their
entire input graph. At this point, the next step is to find a particularly effective variant of this general approach and apply it to chemical prediction benchmarks until we either solve them or reach
the limits of the approach. In this paper, we reformulate existing models into a single comman framework we call Message Passing Neural Networks (MPNNs) and explore additional novel
variations within this framework. Using MPNNs we demonstrate state of the art results on an important molecular property prediction benchmark; these results are strong enough that we
believe future work should focus on datasets with larger molecules or more accurate ground truth labels.

Comments: 14 pages

Subjects: Machine Learning (cs.LG)
ACM classes: 1.2.6
Cite as: arXiv:1704.01212 [es.LG]

(or arXiv 1704 01212v2 [es.LG] for this version)
https://doi.org/10.48550/arXiv.1704.01212 o

Submission history

From: Justin Gilmer [view email]
[v1] Tue, 4 Apr 2017 23:00:44 UTC (140 KB)
[v2] Mon, 12 Jun 2017 20:52:56 UTC {118 KB)
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Message Passing Neural Net
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~ 1072 seconds

Figure 1. A Message Passing Neural Network predicts quantum
properties of an organic molecule by modeling a computationally
expensive DFT calculation.
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Open-Source Cheminformatics
and Machine Learning
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© N O 0k e

Molecule Creation
Property Calculation
Chemical Reactions
Molecular fingerprints

3D Conformer Generation
QSAR modeling
Substructure Searching
Force Field Optimization

RDKit

9. Pharmacophore Modeling

10. Constrained Embedding

11. Shape and Volume Calculations
12.



RDKIit Chem Module : Atom-Level Functions

« atom.GetSymbol(): Returns the atomic symbol (e.g., "C", "O™).

« atom.GetChiralTag(): Retrieves the atom's chirality (R/S or achiral).

« atom.GetTotalDegree(): Gets the total degree of the atom, including bonds to hydrogen.
« atom.GetFormalCharge(): Provides the atom's formal charge.

« atom.GetTotaNumHSs(): Counts explicit and implicit hydrogens on the atom.

« atom.GetNumRadicalElectrons(): Returns the number of radical electrons.

« atom.GetHybridization(): Retrieves the atom's hybridization (e.g., sp2, sp3).

« atom.GetlsAromatic(): Checks if the atom is aromatic.

« atom.IsInRing(): Determines if the atom is part of a ring.

« atom.GetOwningMol(): Retrieves the molecule object that owns the atom.



RDKIit Chem Module : Bond-Level Functions

* bond.GetBondType(): Gets the bond type (single, double, triple, aromatic).

* bond.GetBondDir(): Retrieves the bond direction (e.g., BEGINWEDGE).

* bond.GetStereo(): Provides stereochemistry information (cis/trans).

* bond.GetlsConjugated(): Checks if the bond is conjugated.

* bond.IsInRing(): Determines if the bond is part of a ring.

* bond.GetBeginAtomldx() and bond.GetEndAtomIldx(): Fetch the indices of
the bonded atoms.

* bond.GetOwningMol(): Retrieves the molecule object that owns the bond.



RDKIit Chem Module : Molecule-Level Functions

*mol.GetConformer(): Retrieves the conformer for accessing 3D positions.
*mol.GetNumConformers(): Checks if the molecule has any conformers.

*mol.Compute2DCoords(): Generates 2D coordinates for the molecule.
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Unified Graph: N-Dimensional Non-Linear Probabilistic
Graph Model

51



Model
GCN (Graph Convolutional Network)

*MPNN (Message Passing Neural
Network)

GAT (Graph Attention Network)

*RGCN (Relational GCN)
GIN (Graph Isomorphism Network)
GraphSAGE
*D-MPNN (Directed MPNN)

ChebNet

Pros Cons / Limitations

No edge/bond awareness; poor long-

Fast, scalable; good for basic property range expressiveness; over-smoothing in

prediction. deep layers.
Accurate in molecular tasks; good Higher computational cost; complex
chemical realism. architecture tuning.

Attention overhead increases

Interpretable; effective on complexity; limited scalability to large

heterogeneous graphs.

graphs.
Ideal for molecular graphs with Model size grows with relation types;
heterogeneous bonds. overfitting risk in small datasets.
Strong representational capacity; good Ignores edge types; overfitting possible
for classification. on small data; less interpretable.
Works well on large molecular graphs;  Less sensitive to chemical structure;
generalizable to unseen data. weaker granularity in molecular context.
More chemically accurate; great for  More complex implementation; requires
reaction/property prediction. directed graph data.
Efficient and deeper local context Less intuitive than spatial GCNSs; not

modeling. widely adopted in cheminformatics.
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arl <1V > ¢s > arXiv:1803.03324

Computer Science > Machine Learning

[Submitted on & Mar 2018]
Learning Deep Generative Models of Graphs

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, Peter Battaglia

Graphs are fundamental data structures which concisely capture the relational structure in many impartant real-world domains, such as knowledge graphs, physical and social interactions, language, and chemistry. Here we
introduce a powerful new approach for learning generative madels aver graphs, which can capture both their structure and attributes. Our approach uses graph neural networks to express probabilistic dependencies among a
graph's nodes and edges, and can, in principle, leamn distributions over any arbitrary graph. In a series of experiments our results show that once trained, our models can generate good guality samples of both synthetic graphs as
well as real molecular graphs, both unconditionally and conditioned on data. Compared to baselines that do not use graph-structured representations, our models often perform far better. We also explore key challenges of learning
generative models of graphs, such as how to handle symmetries and ordering of elements during the graph generation process, and offer possible solutions. Our waork is the first and most general approach for learning generative
madels aver arbitrary graphs, and opens new directions for moving away from restrictions of vector- and sequence-like knowledge representations, toward more expressive and flexible relational data structures.

Comments: 21 pages
Subjects:  Machine Learning (cs.LG); Machine Learning (stat. ML)
Cite as: arXiv:1803.03324 [cs.LG]
{or arXiv:1803.03324v1 [cs.LG] for this version)
https://doi.org/10.48550/arXiv.1803.03324

Submission history

From: Yujia Li [view email]
[v1] Thu, 8 Mar 2018 22:20:00 UTC (1,145 KB)
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al (1\/ > ¢s > arXiv:2206.06089

Computer Science = Artificial Intelligence

[Submitted on 24 May 2022 (v1), last revised 30 Jan 2023 (this version, v3)]

Graph Neural Networks Intersect Probabilistic Graphical Models: A Survey
Chenging Hua, Sitao Luan, Qian Zhang, Jie Fu

Graphs are a powerful data structure to represent relational data and are widely used to describe complex real-world data structures. Probabilistic Graphical Models (PGMs) have been well-developed in the past years to
mathematically model real-world scenarios in compact graphical representations of distributions of variables. Graph Neural Networks (GNNs) are new inference methods developed in recent years and are attracting growing
attention due to their effectiveness and flexibility in solving inference and learning problems over graph-structured data. These two powerful approaches have different advantages in capturing relations from observations and how
they conduct message passing, and they can benefit each other in various tasks. In this survey, we broadly study the intersection of GNNs and PGMs. Specifically, we first discuss how GNNs can benefit from learning structured
representations in PGMs, generate explainable predictions by PGMs, and how PGMs can infer object relationships. Then we discuss how GNNs are implemented in PGMs for more efficient inference and structure learning. In the

end, we summarize the benchmark datasets used in recent studies and discuss promising future directions.

Subjects: Artificial Intelligence (cs.Al); Machine Learning (cs.LG)
Cite as:  arxiv:2206.06089 [cs.Al]
{or arXiv:2206.06085v3 [cs.Al] for this version)
https-//doi.org/10.48550/arXiv. 2206 06089 )

Submission history

From: Chenging Hua [view email]

[v1] Tue, 24 May 2022 03:36:25 UTC (3,376 KB)
[v2] Fri, 18 Nov 2022 04:05:34 UTC (3,376 KB}
[v3] Mon, 30 Jan 2023 10:47:31 UTC (3,376 KB)
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Journal of Chemical Information and Modeling pubs.acs.org/jcim

Table 5. Molecular Generation and Reconstruction Performance in ZINC250k

% Validity %Validity w/o check %Novelty %Uniqueness %Reconstruction
SDVAE® 41.40 41.40 100 100 76.22
CGVAE” 100 n/a 100 99.82 n/a
JT-VAE® 100 n/a 100 99.96 76.54
GraphNVP* 42.60 42.60 100 94.80 100
GraphAF* 100 71.40 100 99.10 100
MoFlow* 100 45.61 100 99.92 100
GraphDE" 100 89.03 100 99.16 100
GCPN* 100 21.04 100 99.93 n/a
MRNN* 100 65.00 100 99.89 n/a

“Data is cited from MoFlow.'%® ¥Data is cited from the corresponding papers. “Data is obtained by running its official source code.

Table 6. Molecular Generation and Reconstruction Performance in QM9

%Validity %Validity w/o check %Novelty %Uniqueness %Reconstruction
CGVAE“ 100 n/a 94.35 98.57 n/a
JT-VAE” 99.86 n/a 100 96.32 68.53
GraphNVP” 50.86 50.86 88.46 97.52 100
GraphAF"” 100 46.30 91.54 99.15 100
MoFlow" 100 81.14 97.3 99.26 100
GraphDF“ 100 82.67 98.1 97.62 100
GCPN” 100 18.23 100 87.13 n/a

“Data is cited from the corresponding papers. “Data is obtained by running its official source code. 56
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Compute Unified Device Architecture

(CU DA)
OpenACC, CUDA
C++ Thrust, CUDA C++
OpenACC, CUDA Fortran

PyCUDA, PyOpenCL
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MOLECULAR MECHANICS | January 6, 2021

Accelerating AutoDock4 with GPUs and Gradient-Based Local Search

Diogo Santos-Martins, Leonardo Solis-Vasquez, Andreas F Tillack, Michel F Sanner, Andreas Koch*, and Stefano Forli*

Copyright © 2021 American Chemical Society

Request reuse permissions

ﬁ | Access Through Your Institution Other Access Options © Supporting Information (1) inmusin
Abstract
AutoDock4 is a widely used program for docking small molecules to bt At Cintions
utoDock
2173 17 158

macromolecular targets. It describes ligand-receptor interactions
using a physics-inspired scoring function that has been proven useful
in a variety of drug discovery projects. However, compared to more
modern and recent software, AutoDock4 has longer execution times,
limiting its applicability to large scale dockings. To address this
problem, we describe an OpenCL implementation of AutoDock4, called
AutoDock-GPU, that leverages the highly parallel architecture of GPU
hardware to reduce docking runtime by up to 350-fold with respect to a

Learn about these metrics

Recommended Articles

AutoDock Vina 1.2.0: New Docking Methods, Expanded Force
Field, and Python Bindings

evaluation algorithmic
speedup performance
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on a piece of NVIDIA RTX 3090 GPU in one virtual screening case.

Further speedup of AutoDock Vina and its derivatives with graphics

processing units (GPUs) is beneficial to systematically push their £
popularization in large-scale virtual screens due to their high benefit-

cost ratio and easy operation for users. Thus, we proposed the Vina- alrculs daling

GPU 2.0 method to further accelerate AutoDock Vina and the most

common derivatives with new docking algorithms (QuickVina 2 and
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