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➢Molecular Modeling + Cheminformatics

➢Pharmacophore Modeling

➢Quantitative Structure-Activity Relationship (QSAR) Analysis

➢Docking Studies

➢Molecular Dynamics

➢ADME-Tox Prediction
5

Computer Aided Drug Design 
(CADD)
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Method Operation Pros Cons (Limitations)

2D QSAR

Uses molecular descriptors 

derived from 2D chemical 

structure (e.g., logP, 

molecular weight, atom 

counts) to model biological 

activity.

Simple, fast, low 

computational cost; 

interpretable descriptors.

Ignores 3D conformation, 

steric and spatial interactions; 

oversimplified representation.

3D QSAR

Uses 3D molecular alignment 

and steric/electrostatic fields 

to relate spatial features to 

biological activity (e.g., 

CoMFA, CoMSIA).

Captures spatial orientation; 

more predictive than 2D 

QSAR when alignment is 

optimal.

Highly sensitive to molecular 

alignment; fails if 

conformations are inaccurate; 

still lacks dynamics.

Ligand-Based 

Pharmacophore

Identifies common 3D 

features (e.g., hydrogen bond 

donor/acceptor, hydrophobic 

regions) from a set of active 

ligands to define essential 

pharmacophoric space.

No need for receptor 

structure; good for hit 

expansion; interpretable 

models.

Assumes similar ligands bind 

similarly; lacks receptor 

interaction info; static model.

Structure-Based 

Pharmacophore

Extracts pharmacophore 

features directly from ligand-

receptor complex or protein 

binding site (e.g., via docking 

or crystallography).

Utilizes direct structural 

information from receptor; 

context-specific modeling.

Requires accurate receptor 

structure; limited by static 

snapshot; ignores molecular 

dynamics.



Where is AI

8



9



1. Probability 

2. Decision Theory

3. Information Theory

4. Linear Algebra

5. Calculus

6. Generalized linear models

7. Optimization

8. Graphs | HyperGraphs

9. Inference algorithms

10. Message Passing 

Algorithms

11. Markov Chain Monte 

Carlo (MCMC)

12. Hamiltonian Monte Carlo 

(HMC)

13. Generative Models

14. State-Space Modeling

15. Latent Space Modeling

16. Reinforcement Learning

17. Deep Neural Networks

18. Causality

19. Beyond the iid assumption

20. …
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The Mathematical Background
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Everything is a Graph
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Recurrent Neural Networks 

(RNN)
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Recurrent Neural Networks 

(RNN)



1. Sequential data

2. Order Matters

3. Dependency

4. Memory Needed:  internal hidden state that serves 
as a memory of previous inputs. 

5. Time matters:  the same set of weights and biases 
across all time steps

6. Dynamic
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•Sequential data examples:

Time Series Data

Text Data

DNA Sequences

Speech Signals

Video Data

SMILES (Simplified Molecular Input Line Entry 
System)
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1. Valence Information

2. Implicit Hydrogens

3. Lack of 3D Geometry Information

4. Isomer Representation
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Recurrent Neural Networks 

(RNN)



1. Generative Pre-trained Transformer (GPT) 

2. Bidirectional Encoder Representations from 
Transformers (BERT) 

3. Bidirectional and Auto-Regressive 
Transformer(BART): The best of both worlds
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MegaMolBART

• MegaMolBART molecular sequence, based upon known molecular 
sequences, is an autoencoder trained on small molecules in the form of 
SMILES that can be used for molecular representation tasks, molecule 
generation, and retrosynthesis. It was developed using the BioNeMo 
framework. MegaMolBART has eight layers, four attention heads, a 
hidden space dimension of 256, and contains 45M parameters. This 
model is ready for commercial/non-commercial use.
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Graph Neural Networks
(GNN)
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• GNNs have been an area of rapid development in recent years. 
According to the State of AI report from 2021, GNNs have evolved 
“from niche to the hottest fields of AI research.”

• GNNs have been applied in a variety of areas, including the following:

 • Text classification (https://arxiv.org/abs/1710.10903)

 • Recommender systems (https://arxiv.org/abs/1704.06803)

 • Traffic forecasting (https://arxiv.org/abs/1707.01926)

 • Drug Discovery (https://arxiv.org/abs/1806.02473
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https://arxiv.org/abs/1806.02473
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Dynamic vs Static Graphs

Temporal Nature:

Static Graphs: Static graphs represent a snapshot of a network or 
system at a single point in time. They do not capture changes or 
interactions over time.

Dynamic Graphs: Dynamic graphs explicitly capture changes and 
interactions over time. They consist of multiple snapshots (timestamps), 
and edges or nodes can appear, disappear, or change attributes between 
snapshots.
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Dynamic vs Static Graphs

Use Cases:

Static Graphs: Static graphs are suitable for modeling systems or 
networks that do not change or evolve significantly over time. They are 
commonly used for social networks, citation networks, and many other 
applications where the underlying structure remains relatively constant.

Dynamic Graphs: Dynamic graphs are used when modeling systems or 
networks that exhibit temporal dependencies, where interactions, events, 
or relationships change over time. Examples include communication 
networks, transportation systems, and epidemiological models.
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Dynamic vs Static Graphs

Representation:

Static Graphs: Static graphs are typically represented using a single 
adjacency matrix, where each entry represents the presence or absence 
of an edge between two nodes. Node and edge attributes are constant.

Dynamic Graphs: Dynamic graphs are represented as a sequence of 
static graphs, each associated with a specific timestamp. Edges and 
nodes can have associated timestamps and attributes that evolve over 
time.
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Dynamic vs Static Graphs

Analytical Challenges:

Static Graphs: Analyzing static graphs is often simpler, as they do not 
involve temporal dynamics. Traditional graph algorithms and metrics 
are commonly applied.

Dynamic Graphs: Analyzing dynamic graphs can be more complex 
due to the need to consider temporal aspects. Researchers use 
specialized algorithms for tasks like tracking node or edge changes, 
detecting patterns over time, and predicting future states.
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Dynamic vs Static Graphs

Storage and Processing:

Static Graphs: Storing and processing static graphs are often more 
straightforward since the graph structure remains constant.

Dynamic Graphs: Handling dynamic graphs requires more advanced 
data structures and algorithms to efficiently manage changes over time.
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Dynamic Graph
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RDKit

1. Molecule Creation 

2. Property Calculation 

3. Chemical Reactions 

4. Molecular fingerprints

5. 3D Conformer Generation 

6. QSAR modeling

7. Substructure Searching 

8. Force Field Optimization

9. Pharmacophore Modeling

10. Constrained Embedding

11. Shape and Volume Calculations

12. …
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RDKit Chem Module : Atom-Level Functions
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• atom.GetSymbol(): Returns the atomic symbol (e.g., "C", "O").

• atom.GetChiralTag(): Retrieves the atom's chirality (R/S or achiral).

• atom.GetTotalDegree(): Gets the total degree of the atom, including bonds to hydrogen.

• atom.GetFormalCharge(): Provides the atom's formal charge.

• atom.GetTotalNumHs(): Counts explicit and implicit hydrogens on the atom.

• atom.GetNumRadicalElectrons(): Returns the number of radical electrons.

• atom.GetHybridization(): Retrieves the atom's hybridization (e.g., sp2, sp3).

• atom.GetIsAromatic(): Checks if the atom is aromatic.

• atom.IsInRing(): Determines if the atom is part of a ring.

• atom.GetOwningMol(): Retrieves the molecule object that owns the atom.



RDKit Chem Module : Bond-Level Functions
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• bond.GetBondType(): Gets the bond type (single, double, triple, aromatic).

• bond.GetBondDir(): Retrieves the bond direction (e.g., BEGINWEDGE).

• bond.GetStereo(): Provides stereochemistry information (cis/trans).

• bond.GetIsConjugated(): Checks if the bond is conjugated.

• bond.IsInRing(): Determines if the bond is part of a ring.

• bond.GetBeginAtomIdx() and bond.GetEndAtomIdx(): Fetch the indices of 

the bonded atoms.

• bond.GetOwningMol(): Retrieves the molecule object that owns the bond.



RDKit Chem Module : Molecule-Level Functions
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•mol.GetConformer(): Retrieves the conformer for accessing 3D positions.

•mol.GetNumConformers(): Checks if the molecule has any conformers.

•mol.Compute2DCoords(): Generates 2D coordinates for the molecule. 
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Unified Graph: N-Dimensional Non-Linear Probabilistic 

Graph Model
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Model Pros Cons / Limitations

GCN (Graph Convolutional Network)
Fast, scalable; good for basic property 

prediction.

No edge/bond awareness; poor long-

range expressiveness; over-smoothing in 

deep layers.

*MPNN (Message Passing Neural 

Network)

Accurate in molecular tasks; good 

chemical realism.

Higher computational cost; complex 

architecture tuning.

GAT (Graph Attention Network)
Interpretable; effective on 

heterogeneous graphs.

Attention overhead increases 

complexity; limited scalability to large 

graphs.

*RGCN (Relational GCN)
Ideal for molecular graphs with 

heterogeneous bonds.

Model size grows with relation types; 

overfitting risk in small datasets.

GIN (Graph Isomorphism Network)
Strong representational capacity; good 

for classification.

Ignores edge types; overfitting possible 

on small data; less interpretable.

GraphSAGE
Works well on large molecular graphs; 

generalizable to unseen data.

Less sensitive to chemical structure; 

weaker granularity in molecular context.

*D-MPNN (Directed MPNN)
More chemically accurate; great for 

reaction/property prediction.

More complex implementation; requires 

directed graph data.

ChebNet
Efficient and deeper local context 

modeling.

Less intuitive than spatial GCNs; not 

widely adopted in cheminformatics.
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Compute Unified Device Architecture

(CUDA)
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Message Passing Interface

(MPI)
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Message Passing Interface

(MPI)
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Message Passing Interface

(MPI)
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GROMACS_MPI

(GMX_MPI)
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